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Abstract. Let F be a union-closed family of subsets of an m-element set A.
Let n = |F| ≥ 2. For b ∈ A let w(b) denote the number of sets in F containing

b minus the number of sets in F not containing b. Frankl’s conjecture from
1979, also known as the union-closed sets conjecture, states that there exists

an element b ∈ A with w(b) ≥ 0.
The present paper deals with the average of the w(b), computed over all

b ∈ A. F is said to satisfy the averaged Frankl’s property if this average is non-
negative. Although this much stronger property does not hold for all union-

closed families, the first author [7] verified the averaged Frankl’s property

whenever n ≥ 2m − 2m/2 and m ≥ 3.
The main result of this paper shows that (1) we cannot replace 2m/2 with

the upper integer part of 2m/3, and (2) if Frankl’s conjecture is true (at least
for m-element base sets) and n ≥ 2m − b2m/3c then the averaged Frankl’s

property holds (i.e., 2m/2 can be replaced with the lower integer part of 2m/3).

The proof combines elementary facts from combinatorics and lattice theory.
The paper is self-contained, and the reader is assumed to be familiar neither

with lattices nor with combinatorics.

1. Introduction and the main theorem

Given an m-element finite set A = {a1, . . . , am}, a family (or, in other words,
a set) F of subsets of A, i.e. F ⊆ P (A), is called a union-closed family (over
A) if X ∪ Y ∈ F whenever X,Y ∈ F . We always assume that A is finite with
3 ≤ m := |A| and n := |F| ≥ 2. It was Peter Frankl in 1979 who formulated
the following conjecture, now known as Frankl’s conjecture or the union-closed sets
conjecture: if F is as above then there exists an element of A which is contained
in at least half of the members of F . In spite of at least three dozen papers, this
conjecture is still open. Hence it will be convenient to use the following terminology:
we say that Frankl’s conjecture holds over m-element base sets, if for any union-
closed family F of subsets of an m-element (equivalently, at most m-element) set
A with |F| ≥ 2, there exists an element of A which is contained in at least half of
the members of F .

Clearly, it is sufficient to consider only those union-closed sets that contain the
empty set. Hence in the sequel, when the size |F| of F will be important, we will
always assume that ∅ ∈ F .
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The known achievements on Frankl’s conjecture belong to two categories. The
first category is constituted by those (in fact, the majority of) results that be-
long to pure combinatorics, with respect to both the statements and their proofs.
There are several directions and the titles of the listed references speak for them-
selves, so we mention only a few results relevant to our investigations. Bošnjak and
Marković [5] prove that Frankl’s conjecture holds over eleven-element base sets,
while Roberts [30] settles the case n = |F| ≤ 40 and n < 4m−1. As an opposite to
Roberts’ result on “small families”, Gao and Yu [13] verify the conjecture for “very
large families”, i.e. for those with

(1) n ≥ 2m − 12
(3

2

)[m/3]

− 1
2

(
m

3

)
− 5

3
m + 44.5 .

For other achievements of combinatorial nature cf., e.g., Norton and Sarvate [21]
and Vaughan [32]. One can read more about the problem at [37] or, of course, in
Frankl [12].

On the other hand, Stanley [31] and Poonen [22] establish a nice lattice theo-
retic version of Frankl’s conjecture. (For details one can also see [7] or Abe and
Nakano [3].) This initiated a series of lattice theoretical papers given by Abe and
Nakano [1], [2], [3], [4], Herrmann and Langsdorf [14], and Reinhold [24] (some
of which contained results already known in the folklore); these are the results
belonging to the second category.

However, there were no real links between the combinatorial and the lattice
theoretical approaches before [7], except of course for the statement of their equiva-
lence. In particular, results that look “combinatorial” were proved by combinatorial
methods, and the lattice theoretical results have not had a significant influence on
combinatorists. This is very surprising, for the lattice theoretic approach has at
least one obvious advantage: while it is fairly difficult to visualize a union-closed
family with, say, (m,n) = (5, 12), depicting the Hasse diagram of the corresponding
twelve element lattice creates no problem at all.

Probably, [7] is the first case when a purely combinatorial statement is proved
within lattice theory. Similarly, the present paper belongs to neither of the above-
mentioned two categories. Our main result is purely combinatorial without men-
tioning lattices. Its proof is a mixture of lattice theory and combinatorics. However,
only the rudiments of lattice theory and those of combinatorics are used. So the
paper is intended to be self-contained for most of the readers.

Let F be a union-closed family over A and let the notations n = |F| ≥ 2,
m = |A| = {a1, . . . , am} be fixed throughout. For a ∈ A let

(2) w(a) = |{X ∈ F : a ∈ X}| − |{X ∈ F : a /∈ X}| .
Then Frankl’s conjecture claims the existence of an a ∈ A with w(a) ≥ 0. With
the notation

w(F) =
1
|A|

∑

a∈A

w(a)

let us say that F satisfies the averaged Frankl’s property if

w(F) ≥ 0 .

Although this property clearly implies that Frankl’s conjecture holds for the given
F , it belongs to the folklore that many union-closed families fail to satisfy the
averaged Frankl’s property.
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For a given m = |A|, the maximum value of n is of course 2m. For “large”
union-closed families F including ∅, it is proved in [7] that

(3) |F| ≥ 2m − 2m/2 =⇒ w(F) ≥ 0.

This statement is much stronger than Gao and Yu’s (1) in two senses: (3) covers
many more instances of F , and “Frankl’s” is replaced by “averaged Frankl’s”.

Even if 2m/2 is better, i.e., larger, than the corresponding expression in (1),
already [7] observes that 2m/2 is not the optimal value. The original target of
the present paper was to replace 2m/2 in (3) with the best possible value, in the
additional hope that the improved version of (3) gives more information on the
original Frankl’s conjecture as well. Unfortunately, this extra hope is not fulfilled
yet, for the main theorem below assumes the validity of Frankl’s conjecture. As
usual, the upper resp. lower integer part of a real number x will be denoted by dxe
resp. bxc; for example d32/3e = 11.

Main Theorem. Let m ≥ 3, and let A be an m-element set.
(1) There exists a union-closed family F over A with ∅ ∈ F and |F| = b2m+1/3c =

d2m+1/3e − 1 such that F fails the averaged Frankl’s property.
(2) Assume that Frankl’s conjecture holds over m-element base sets. Then each

union-closed family F over A with ∅ ∈ F and

(4) n := |F| ≥ d2m+1/3e

satisfies the averaged Frankl’s property.

Frankl’s conjecture has been intensively studied and it is almost three decades
old. Hence it is reasonable to conjecture that (4) in itself implies w(F) ≥ 0 for
union-closed families F .

The rest of the paper is devoted to the proof of this theorem and will run as
follows. First we introduce some integer sequences, and study their elementary
properties. This requires only elementary arguments with induction. Then we
study order-ideals and (order-) semi-ideals (to be defined later) of finite Boolean
lattices. We are interested in how to maximize the sum (equivalently, the average)
of heights of elements of an order-ideal or semi-ideal X when |X| is fixed. Using the
properties of our integer sequences we will show the expected but nontrivial fact
that this maximum is available via the obvious greedy algorithm. Order-ideals do
not create an invincible problem; however, our treatment for semi-ideals needs the
assumption that Frankl’s conjecture holds over m-element base sets. This leads to
a new conjecture, formulated at the end of the paper.

Once the greedy algorithm for semi-ideals is proven to be appropriate, the Main
Theorem follows immediately from its obvious reformulation for semi-ideals. Al-
though this reformulation translates the problem to Lattice Theory, this is an easier
and less elegant translation than the usual one by Stanley [31] and Poonen [22].

2. Some integer sequences

We are going to define and study three kinds of integer sequences: ~α, ~β and ~γ.
The ~α resp. ~β sequences calculate the total height of greedy order-ideals resp. greedy
semi-ideals (to be defined later). The ~γ sequences are the stepping stone between
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these two kinds of ideals, and the ~γ sequences are also needed to understand the
inner structure of ~β sequences.

In this section, m and n will denote arbitrary natural numbers. Given two
integer sequences ~a = (a1, . . . , am) and ~b = (b1, . . . , bn), their concatenation will be
denoted by

(a1, . . . , am) ] (b1, . . . , bn) = (a1, . . . , am, b1, . . . , bn).

The length of a sequence ~a is denoted by length(~a); it is always a positive integer
and we have length(~a) + length(~b) = length(~a ] ~b). When length(~a) = length(~b)
then ~a +~b and ~a −~b are understood componentwise, e.g.,

(a1, . . . , ak) + (b1, . . . , bk) = (a1 + b1, . . . , ak + bk).

The constant sequence (j, j, . . . , j) will be denoted by j̄; we use this notation only
in connection with addition, so there will be no ambiguity what the length of j̄ is.
For example, (a1, . . . , ak) + 1̄ is (a1 + 1, . . . , ak + 1). When there exists a sequence
~c with ~a ] ~c = ~b then we say that ~a is a (proper) initial segment of ~b. Now, via
induction, let us define

~α(0) = (0), ~α(i+1) = ~α(i) ] (1̄ + ~α(i)),

~γ(i) = 1̄ + ~α(i) (i = 0, 1, 2 . . .), and
~β(1) = γ0, ~β(i+1) = ~γ(i) ] ~β(i), which means that

~β(j) = ~γ(j−1) ] ~γ(j−2) ] · · · ] ~γ(1) ] ~γ(0) (j = 1, 2, 3, . . .).

For example,

~α(4) = (

~α(3)

︷ ︸︸ ︷
0, 1, 1, 2︸ ︷︷ ︸
~α(2)

, 1, 2, 2, 3︸ ︷︷ ︸
1̄ + ~α(2)

,

1̄ + ~α(3)

︷ ︸︸ ︷
1, 2, 2, 3,2,3, 3, 4) and

~β(4) = ( 1, 2, 2, 3, 2,3, 3, 4︸ ︷︷ ︸
~γ(3)

, 1, 2, 2, 3︸ ︷︷ ︸
~γ(2)

, 1, 2︸︷︷︸
~γ(1)

, 1︸︷︷︸
~γ(0)

) .

Notice that length(~α(i)) = length(~γ(i)) = 2i (0 ≤ i) while length(~β(i)) = 2i − 1
(1 ≤ i). The first member of a sequence is always indexed by 1. The ith member
of ~α(n) will, of course, be denoted by ~α

(n)
i , and similar notations apply for ~β(n)

and ~γ(n). For convenience, let ~α(∞) resp. ~γ(∞) denote the infinite sequence whose
initial segment of length 2k is ~α(k) resp. ~γ(k) for each k ∈ N = {1, 2, . . .}.

For 0 ≤ k ≤ n, the subsequences of the form

segm(~a, 2k, i) := (ai2k+1, ai2k+2, . . . , a(i+1)2k), i = 0, 1, . . . , 2n−k − 1

are called 2k-segments of ~a = (a1, . . . , a2n). Consecutive 2k-segments will play an
important role in the forthcoming considerations. Let

segm(~a, 2k, i), . . . , segm(~a, 2k, i+ ` − 1) and

segm(~a, 2k, j), . . . , segm(~a, 2k, j + `− 1)

be two families of ` consecutive 2k-segments, and consider two subsets X and Y
of the corresponding index sets, i.e., let X ⊆ {t : i2k + 1 ≤ t ≤ (i + `)2k} and
Y ⊆ {t : j2k + 1 ≤ t ≤ (j + `)2k}. We say that X and Y are equally positioned in
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these families of 2k-segments if X → Y , x 7→ x+ (j − i)2k is a bijection. That is,
“equally positioned” has the natural meaning.

Given a sequence ~a = (a1, . . . , a`); the sum of t consecutive members of ~a begin-
ning at the ith position will be denoted by

σ(~a, i, t) = ai + ai+1 + · · ·+ ai+t−1 .

This notation assumes that 1 ≤ i, 0 ≤ t and i+ t− 1 ≤ `. Notice that σ(~a, i, 0) = 0
by convention. The forthcoming lemmas will be formulated only for ~α(n), but other
than Lemma 2 they will be obviously valid and used for ~γ(n) as well. As usual,
N0 = N ∪ {0} denotes the set of nonnegative integers.

Lemma 1. Let i ∈ N and j ∈ N0 with i + j − 1 ≤ 2n. Then σ(~α(n), 1, j) ≤
σ(~α(n), i, j).

Proof. We can assume that i > 1. We use induction on j. Since ~α(n)
1 is the only

occurrence of 0 in ~α(n), the statement is evident for j ≤ 1. So we assume that
j > 1 and the lemma holds for 1, . . . , j − 1. For brevity, let x = σ(~α(n), 1, j) and
y = σ(~α(n), i, j).

If i ≤ j (pictorially: if x and y overlap) then

x = σ(~α(n), 1, i− 1) + σ(~α(n), i, j − i+ 1) and

y = σ(~α(n), i, j − i+ 1) + σ(~α(n), j + 1, i− 1) ,(5)

and x ≤ y follows from the induction hypothesis.
Hence we can assume that i > j. The pictorial illustration below (even if it does

not reflect the full generality) will be useful for what comes next:

~α(n) =(
~α(k)

︷ ︸︸ ︷
•, . . . , •,

1̄ + ~α(k)

︷ ︸︸ ︷
•, . . . , •,

1̄ + ~α(k)

︷ ︸︸ ︷
•, . . . , •, . . . ,

ū+ ~α(k)

︷ ︸︸ ︷
•, . . . , •,

v̄ + ~α(k)

︷ ︸︸ ︷
•, . . . , •,

w̄+ ~α(k)

︷ ︸︸ ︷
•, . . . , •, . . .)

~α(n) =( •, . . . , •, •, . . . , •, •︸ ︷︷ ︸
z

, . . . , •, . . . , •, . . . , •, •, . . . , •, •︸ ︷︷ ︸
y

, . . . , •, . . .) .

Consider the unique k ∈ N0 such that 2k ≤ j < 2k+1. The assumption that x and
y do not overlap implies that k ≤ n− 1.

Firstly, we assume that k < n − 1. Then we can choose three consecutive 2k-
segments, say segm(~α(n), 2k, q), segm(~α(n), 2k, q+1) and segm(~α(n), 2k, q+2), such
that the summands of y belong to this family B of consecutive 2k-segments. (More
precisely but less pictorially, such that q2k + 1 ≤ i and i + j − 1 ≤ (q + 3)2k.)
Consider also the family A of the 2k-segments segm(~α(n), 2k, 0), segm(~α(n), 2k, 1)
and segm(~α(n), 2k, 2), that is, the first three 2k-segments. Let z be the sum of j
consecutive members in the first three 2k-segments such that the summands of z in
A and the summands of y in B are equally positioned. (More formally, i = q2k + r

and z = σ(~α(n), r, j).) Observe that A consists of ~α(k), 1̄ + ~α(k), 1̄ + ~α(k) while B
consists of ū+ ~α(k), v̄ + ~α(k), w̄ + ~α(k) for appropriate positive integers u, v, w.

Now, 0 < u, 1 ≤ v and 1 ≤ w, whence the elements of the first three 2k-
segments are less than or equal to the corresponding elements of segm(~α(n), 2k, q),
segm(~α(n), 2k, q+1), and segm(~α(n), 2k, q+2). Hence z ≤ y, for z and y are equally
positioned. Further, x ≤ z follows from the previously considered “overlapping”
case, and we conclude x ≤ y.
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Secondly, we assume that k = n−1. Then ~α(n) consists of two 2k-segments only.
Since x and y do not overlap, we obtain that j = 2k and i = 2k + 1. Using ~α(n) =
~α(k) ] (1̄ + ~α(k)), we conclude that x = σ(~α(k), 1, 2k) < σ(1̄ + ~α(k), 1, 2k) = y. �

Define the inverse of a sequence ~a = (a1, a2, . . . , ak) as

inv(a1, a2, . . . , ak) = (ak, ak−1, . . . , a1).

The proof, a trivial induction, of the following lemma is left to the reader.

Lemma 2. ~α(n) + inv(~α(n)) = n̄.

Now we formulate a statement on the sum of the last j members of ~α(n).

Lemma 3. If j ≤ 2n and 1 ≤ i < 2n − j then σ(~α(n), i, j) ≤ σ(~α(n), 2n − j + 1, j).

Proof. Consider the sequence n̄− ~α(n). This sequence is the inverse of ~α(n), so the
sum of the last j members becomes the sum of the first j members. Hence the
assertion follows from Lemma 1. �

Lemma 4. Let i, j < 2n and define

u :=

{
i+ j, if i+ j ≤ 2n

2n, if i+ j > 2n
and v := i + j − u .

Then σ(~α(n), 1, i) + σ(~α(n), 1, j) ≤ σ(~α(n), 1, u) + σ(~α(n), 1, v).

Proof. If i+ j ≤ 2n then v = 0 gives σ(~α(n), 1, v) = 0, and the assertion is a trivial
consequence of Lemma 1. Hence we can assume that i + j > 2n. Let us compute;
the application of Lemma 3 will be denoted by ∗, and we will use that j−v = 2n− i
and (therefore) j > v:

σ(~α(n), 1, i) + σ(~α(n), 1, j) = σ(~α(n), 1, i) + σ(~α(n), 1, v) + σ(~α(n), v + 1, j − v)

≤∗σ(~α(n), 1, i) + σ(~α(n), 1, v) + σ(~α(n), i+ 1, 2n − i) =

σ(~α(n), 1, 2n) + σ(~α(n), 1, v) = σ(~α(n), 1, u) + σ(~α(n), 1, v) . �

Lemma 5. If 1 ≤ i < 2n then ~β
(n)
i ≤ ~γ

(n)
i .

Proof. An easy induction on n. If i ≤ 2n−1 then ~β
(n)
i = ~γ

(n)
i by definition. Other-

wise ~β(n)
i = ~β

(n−1)
i−2n−1 ≤ ~γ

(n−1)
i−2n−1 < (1̄ + ~γ(n−1))i−2n−1 = ~γ

(n)
i . �

Lemma 6. If 0 ≤ j < 2n−1 and 0 ≤ i ≤ 2n−1 then σ(~β(n), 2n−1 + 1, j) ≤
σ(~β(n), i, j).

Proof. For brevity, let x = σ(~β(n), 2n−1 + 1, j) and y = σ(~β(n), i, j).
First assume that i + j − 1 ≤ 2n−1. This means that the summands of y lie

entirely in ~γ(n−1); however, the following illustration is only a particular case (for
y and z may overlap):

~β(n) = (
~γ(n−1)

︷ ︸︸ ︷
•, . . . , •︸ ︷︷ ︸

z

, . . . , •, . . . , •︸ ︷︷ ︸
y

, . . . , •,

~β(n−1)

︷ ︸︸ ︷
•, . . . , •︸ ︷︷ ︸

x

, •, •, •, •, . . ., • )

For z = σ(~β(n), 1, j) = σ(~γ(n−1), 1, j) we obtain x ≤ z from Lemma 5. Then
z ≤ σ(~γ(n−1), i, j) = y by Lemma 1, whence x ≤ y.
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Now we assume that 2n−1 < i + j − 1, which means that x and y overlap.
Let z = σ(~β(n), 2n−1 + 1, i + j − 2n−1 − 1), the “intersection of x and y”, u =
σ(~β(n), i + j, 2n−1 + 1 − i), v = σ(~β(n), i, 2n−1 + 1 − i), and, further, let w =
σ(~β(n), i+ j−2n−1, 2n−1+1− i). Then x = z+u and y = z+v, cf. the illustration
below (notice that w and v may overlap).

~β(n) = (
~γ(n−1)

︷ ︸︸ ︷
•, •, . . . , •, •, . . . , •︸ ︷︷ ︸

w

, . . . , •, . . . , •︸ ︷︷ ︸
v

,

~β(n−1)

︷ ︸︸ ︷
•, •, . . ., •︸ ︷︷ ︸

z

, •, . . . , •︸ ︷︷ ︸
u

, . . . , •, . . . , •)

Since u and w are “equally positioned”, Lemma 5 gives u ≤ w. Then Lemma 3
applied to ~γ(n−1) yields w ≤ v. Finally, u ≤ v implies x = z + u ≤ z + v = y. �

Lemma 7. If 0 ≤ i < 2n−1 and 0 ≤ j ≤ 2n−1 then

σ(~β(n−1), 1, i) + σ(~γ(n−1), 1, j) ≤ σ(~β(n), 1, i+ j).

Proof. Since ~β(n) = ~γ(n−1) ] ~β(n−1), we can compute:

σ(~β(n−1), 1, i) + σ(~γ(n−1), 1, j) = σ(~β(n), 2n−1 + 1, i) + σ(~β(n), 1, j) ≤∗

σ(~β(n), j + 1, i) + σ(~β(n), 1, j) = σ(~β(n), 1, i+ j) ,

where ∗ stands for an application of Lemma 6. �

For a sequence ~a, let E(~a, i, . . . , j) denote

E(~a, i, . . . , j) =
σ(~a, i, j − i + 1)

j − i + 1
=
ai + ai+1 + · · ·+ aj

j − i+ 1
,

the average of the elements in the segment (ai, ai+1, . . . , aj). Remember that ~γ(∞)

was introduced for convenience right before the definition of segments; of course
~γ(∞) could be replaced by ~γ(n) in the following lemma.

Lemma 8. Let 2 ≤ n ∈ N.

(1) For k = 1, 2, . . . , b2n/3c, E(~β(n), 1, . . . , k) = E(~γ(∞), 1, . . . , k) ≤ n/2.
(2) E(~β(n), 1, . . . , b2n/3c + 1) = E(~γ(∞), 1, . . . , b2n/3c + 1) > n/2.
(3) For b2n/3c < k ≤ 2n − 1, E(~β(n), 1, . . . , k) > n/2.

Notice that the equations in Parts (1) and (2) are clear by definitions. Although
Part (3) implies Part (2), we will prove only Parts (1) and (2). Part (3) will not
be proved, for it will not be used in the sequel and its proof is similar to but
considerably lengthier than the proofs of Parts (1) and (2).

Proof. Define

Sn = {k ∈ N : E(~γ(∞), 1, . . . , t) ≤ n/2 for t = 1, 2, . . . , k}.

One can easily see that proving that b2n/3c is the largest member of Sn is equivalent
to proving Parts (1) and (2) for n. We prove this via induction on n. The case
n = 2 is evident. Now suppose that n ≥ 3 and that Parts (1) and (2) hold for n−1.
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The first few members of ~γ(∞) are depicted below for n = 5:

~γ(n−1)

︷ ︸︸ ︷
~γ(n−3)

︷ ︸︸ ︷
1, 2, 2, 3,

1̄ + ~γ(n−3)

︷ ︸︸ ︷
2, 3, 3, 4︸ ︷︷ ︸

~γ(n−2)

, 2, 3, 3, 4,3,4,4, 5︸ ︷︷ ︸
1̄ + ~γ(n−2)

,

1̄ + ~γ(n−1)

︷ ︸︸ ︷
2, 3, 3, 4,3, 4, 4,5,3, 4, 4, 5,4,5, 5, 6, . . .

Since 2n−3 ≤ b2n−1/3c, the induction hypothesis gives

(6) E(~γ(∞), 1, . . . , k) ≤ (n− 1)/2 for 1 ≤ k ≤ 2n−3.

Hence {1, 2, . . . , 2n−3} ⊆ Sn. It follows from Lemma 2 that

(7) E(~γ(∞), 1, . . . , 2n−3) = (n− 1)/2.

Rewriting (6) from the first 2n−3-segment to the second one, which is 1̄ + ~γ(n−3),
we obtain

E(~γ(∞), 2n−3 + 1, . . . , 2n−3 + k) ≤ (n+ 1)/2 for 1 ≤ k ≤ 2n−3.

This implies {1, 2, . . . , 2n−2} ⊆ Sn. Now, (7) for the second 2n−3-segment gives
E(~γ(∞), 2n−3 + 1, . . . , 2n−3 + 2n−3) = (n+ 1)/2, which combined with (7) yields

(8) E(~γ(∞), 1, . . . , 2n−2) = n/2.

The shift from the first 2n−2-segment to the second one, 1̄ + ~γ(n−2), changes (8)
into E(~γ(∞), 2n−2 + 1, . . . , 2n−1) = 1 + n/2 = (n + 2)/2, which together with (8)
gives E(~γ(∞), 1, . . . , 2n−1) = (n + 1)/2. Hence 2n−1 /∈ Sn, and we conclude that
the largest member of Sn is 2n−2 + k for some 0 ≤ k < 2n−2. It follows from
(8) that k is the largest number in {0, 1, . . . , 2n−2 − 1} such that E(~γ(∞), 2n−2 +
1, . . . , 2n−2 +k) ≤ n/2. Now going from the second 2n−2-segment 1̄+~γ(n−2) to the
first 2n−2-segment ~γ(n−2), we see that k is the largest number in {0, 1, . . . , 2n−2−1}
such that E(~γ(∞), 1, . . . , k) ≤ n/2−1 = (n−2)/2. Hence k is the largest member of
Sn−2, whence the induction hypothesis gives k = b2n−2/3c. Therefore, the largest
member of Sn is 2n−2 + b2n−2/3c = b2n−2 + 2n−2/3c = b2n/3c. �

3. Semi-ideals and a Theorem equivalent to the Main Theorem

By a lattice (L;≤) we mean a partially ordered set such that for any x, y ∈ L
the supremum and infimum of {x, y} exist; they are denoted by x ∨ y and x ∧ y,
respectively. We deal only with finite lattices; they necessarily have a unique least
element 0 and a unique largest element 1. For a ≤ b ∈ L the subset {x ∈ L : a ≤
x ≤ b} is denoted by [a, b] and it is called an interval of L. When a = 0 or b = 1
then a particular notation applies: ↑a = [a, 1] and ↓b = [0, b]. The covering relation
≺ is defined via a ≺ b iff a ≤ b and |[a, b]| = 2. If 0 ≺ a then a is called an atom of
the lattice.

Let Bm denote the Boolean lattice of size 2m. Each x ∈ Bm has a unique com-
plement x′ satisfying x∨x′ = 1 and x∧x′ = 0. Notice that Bm is isomorphic to the
power set lattice over an m-element set; the singleton sets, the complements of sub-
sets, the empty set and the whole set corresponding to the atoms, the complements
of elements, 0 and 1 of Bm, respectively. The height h(x) of an element x ∈ Bm is
the length of any maximal chain in ↓x. In the powerset model, the height is just
the number of elements of the given subset. If X is a subset of Bm, then the total
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height h(X) of X is defined to be the sum
∑

a∈X h(a). If X is a nonempty subset
X of Bm, then its average height is defined to be and denoted by

h(X) = h(X)/|X| .

A nonempty subset X of Bm is called an order-ideal if for any x ∈ X, ↓x ⊆ X. If
a nonempty set X is the union of certain intervals [ai, bi] such that the ai are (not
necessarily distinct) atoms, then X is said to be a semi-ideal of Bm.

The goal of the next section is to show that whenever the size |X| of an order-
ideal is fixed, then a straightforward greedy algorithm produces an order-ideal with
maximum total height. We also prove the analogous statement for semi-ideals;
however, we could not avoid assuming Frankl’s conjecture in that case. The impor-
tance of semi-ideals is revealed by the following theorem and the lemma following
it.

Theorem 1. Let m ≥ 3.

(1) There exists a semi-ideal X of Bm such that h(X) > m/2 and |X| =
d2m/3e.

(2) Assume that Frankl’s conjecture holds over m-element base sets. Then for
each semi-ideal X of Bm, |X| ≤ b2m/3c implies h(X) ≤ m/2.

By a proper subalgebra of (Bm,∨, 0) we mean a ∨-closed subset Y of Bm such
that 0 ∈ Y 6= Bm. The importance of the above theorem is due to

Lemma 9. Let m ∈ N.

(1) For X ⊆ Bm, X is a semi-ideal iff Bm \ X is a proper subalgebra of
(Bm,∨, 0).

(2) The Main Theorem and Theorem 1 are equivalent statements.
(3) Assume that Frankl’s conjecture holds over m-element base sets. Then for

each semi-ideal X of Bm other than Bm \ {0}, |X ∩ ↑a| ≤ |X|/2 for some
atom a ∈ Bm.

Proof. Let X be a semi-ideal, and let u, v ∈ Y = Bm \X. By way of contradiction,
suppose u∨ v /∈ Y . Then [p, u∨ v] ⊆ X for some atom p ∈ Bm. From p ≤ u∨ v we
conclude p ≤ u or p ≤ v, say, p ≤ u, whence u ∈ [p, u∨ v] ⊆ X contradicts u ∈ Y .
This shows that Y is a subalgebra of (Bm ,∨, 0). It is proper, for X 6= ∅.

Now let Y = Bm \X be a proper subalgebra of (Bm,∨, 0). Then X 6= ∅. Let
u ∈ X, we have to find an atom p ∈ Bm with [p, u] ∩ Y = ∅. Let y denote the
join of the set Y ∩ ↓u. Since y ∈ Y , we have y < u and therefore there is an atom
p ∈ ↓u \ ↓y, which does the job. This proves Part (1).

Now, keeping formula (2) and the powerset model of Bm in mind, for a proper
subalgebra F of (Bm,∨, 0), we let

w(F ) =
1
m

·
∑

a is an atom of Bm

w(a)

where

w(a) =|F ∩ ↑a | − |F ∩ ↓a′ | = 2 · |F ∩ ↑a | − |F ∩ ↑a | − |F ∩ ↓a′ |
=2 · |F ∩ ↑a | − |F |.
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Hence w(F ) ≥ 0 iff

0 ≤
∑

a atom
(2 · |F ∩ ↑a | − |F |) = 2

(
−

∑

a atom
|F |/2 +

∑

a atom
|F ∩ ↑a |

)

=2
(
−m|F |/2 +

∑

(a, b) : a ≤ b ∈ F, a atom
1
)

=2
(
−m|F |/2 +

∑

b ∈ F

∑

a ≤ b, a atom
1
)

=2
(
−m|F |/2 +

∑

b ∈ F

h(b)
)

= 2
(
−m|F |/2 + h(F )

)
.

Dividing by 2|F | we obtain that w(F ) ≥ 0 iff h(F ) ≥ m/2. Now let X = Bm \ F ,
a semi-ideal by Part (1). Since h(Bm) = m/2, h(F ) ≥ m/2 iff h(X) ≤ m/2,
completing the proof of Part (2).

Finally, the straightforward deduction of Part (3) from the above arguments is
left to the reader. �

4. Greedy order-ideals and greedy semi-ideals

Given an integer k ∈ {1, . . . , 2m}, we are looking for a k-element order-ideal X of
the Boolean lattice Bm with maximal total height h(X). It is natural to construct
X in a greedy way by induction on k. For k ≤ 3, every k-element order-ideal has
the same total height. Suppose we know how to construct a (k− 1)-element order-
ideal Y of maximal total height. Then we let X = Y ∪ {x} such that x /∈ Y , X
is an order-ideal and h(x) is as large as possible. Now we have roughly described
our greedy algorithm. The goal of this section is to show that it maximizes the
total height, indeed. First of all, a more exact description of the greedy algorithm
is necessary.

Let a1, a2, . . . , am be a fixed enumeration of the atoms of Bm. Associated with
this enumeration we define a greedy enumeration of Bm via induction as follows.
(For x, y ∈ Bm, x C y will denote that x precedes y in the greedy enumeration.)
For m ≤ 1, let C coincide with the strict lattice order (which is a linear order,
i.e., a chain, in this case). Now assume that m > 1. Clearly, a1 ∨ · · · ∨ am−1

is a′m, the complement of am. The isomorphism theorem of intervals yields that
a1 ∨ am, . . . , am−1 ∨ am is an enumeration of atoms of ↑am, which is a Boolean
lattice. Let C2 denote the greedy enumeration of ↑am associated with the men-
tioned enumeration of its atoms. Let C1 denote the greedy enumeration of ↓a′m
associated with the enumeration a1, · · · , am−1 of its atoms. Finally, let C be the
“concatenation” of C1 and C2 in the following sense: for x, y ∈ Bm, x C y iff
x, y ∈ ↓a′m with x C1 y, or x, y ∈ ↑am with x C2 y, or x ∈ ↓a′m and y ∈ ↑am. The
left-hand lattice in Figure 1 shows the greedy enumeration of B3 associated with
the “from left to right” enumeration (i.e., a1 = c2, a2 = c3, a3 = c5) of its atoms.
(The greedy enumeration is defined by the indexing: ci C cj iff i < j.) Now, by a
greedy order-ideal of Bm we mean a nonempty subset of the form {x ∈ Bm : x E b}
where C is a greedy enumeration of Bm, x E b means x C b or x = b, and b ∈ Bm.
In other words, the greedy order-ideals are the nonempty initial segments of greedy
enumerations. The smallest greedy order-ideal is {0} (take b = 0) while the largest
is Bm (take b = 1). The first part of the following lemma justifies our terminology.
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Lemma 10. Let X be a greedy order-ideal of Bm. Then X is an order-ideal of
Bm, and its total height is

h(X) = σ(~α(m), 1, |X|) , whence h(X) = E(~α(m), 1, . . . , |X|) .

The trivial induction proving this lemma is left to the reader. Now, let a1, a2,
. . ., am still be a fixed enumeration of the atoms of Bm. For j = 1, . . . ,m we define
the interval

Ij = [aj, a
′
1 ∧ · · · ∧ a′j−1] .

In particular, I1 = [a1, 1] ∼= Bm−1, Im = [am, a
′
1 ∧ · · · ∧ a′m−1] = [am, am] ∼= B0,

and in general, Ij ∼= Bm−j . In the right-hand lattice in Figure 1, if we start with
the a1 = e1, a2 = e9, a3 = e13, a4 = e15 enumeration (i.e., from left to right
enumeration) of atoms, we have I1 = [e1, e8], I2 = [e9, e12], I3 = [e13, e14] and
I4 = {e15}. Notice that {I1, . . . , Im} is a partition of Bm \ {0}.

The sequence I1, I2, . . . , Im is called a standard interval sequence of Bm; there
are m! such sequences, for there are m! enumerations of the atoms. Now, by a
greedy semi-ideal of Bm we mean a nonempty subset X of the form

(9) X = I1 ∪ · · · ∪ Ik−1 ∪U
where U is a greedy order-ideal of Ik. (Hence U 6= ∅ but U = Ik is permitted.) The
unique k ∈ {1, . . . ,m} in (9) is said to be the rank of the greedy semi-ideal X, and
it will be denoted by rank(X).

Lemma 11. Let X ⊆ Bm be a greedy semi-ideal of Bm. Then it is indeed a
semi-ideal, and its total height is

h(X) = σ(~β(m), 1, |X|), whence h(X) = E(~β(m) , 1, . . . , |X|) .

It follows from Lemmas 10 and 11 that for each n ≤ 2m resp. k < 2m,Bm includes
a greedy order-ideal resp. greedy semi-ideal of size n resp. k; this observation will
be relevant in the following proofs.

The following lemma is presented not only for its own interest; it will be used in
the next section.

Lemma 12. Let X and Y be order-ideals of Bm such that |X| = |Y | and Y is
greedy. Then h(X) ≤ h(Y ), i.e., h(X) ≤ h(Y ).

Proof. We prove the lemma via induction on m. We can assume that m ≥ 2. Let
X be an order-ideal of Bm. It suffices to construct a greedy order-ideal U such that
|U | = |X| and h(X) ≤ h(U ). We can (and often will) change X during the proof so
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that h(X) does not decrease and |X| remains the same. Now, for later reference,
we formulate four facts; they are evident consequences of definitions. If, for some
k, Y is a greedy order-ideal of Bk and Z is an order-ideal of Bk then

(Fact 1) |Y | ≥ 2k−1 implies that Y contains a coatom of Bk;
(Fact 2) |Y | ≤ 2k−1 implies Y ⊆ ↓c for some coatom c of Bk;
(Fact 3) if Z contains a coatom d′ ∈ Bk and Z ∩ ↑d is a greedy order-ideal of ↑d

then Z is a greedy order-ideal of Bk (here d = d′′ is an atom);
(Fact 4) 1 ≤ j ≤ |Y | implies that Bk has a j-element greedy order-ideal which

is a subset of Y .
Now, if there is an atom a ∈ Bm \X then X is an order-ideal in ↓a′, a Boolean

lattice with m− 1 atoms, whence the induction hypothesis yields an appropriate U
in ↓a′, which is a greedy order-ideal in Bm as well. Hence we can assume that X
contains all the atoms of Bm .

Let a ∈ Bm be an atom. Since Bm is a disjoint union of ↑a and ↓a′, X is the
disjoint union of G′ := X ∩ ↓a′ and G := X ∩ ↑a. (Figure 2, where G′ = G′

2 ∪ ↓p,
depicts a particular but important case.) By the isomorphism theorem of intervals,

1

0

b a

p

a’ b’
B   :m

2 GG’

Figure 2

ϕ : ↓a′ → ↑a, x 7→ x ∨ a and ψ : ↑a → ↓a′, x 7→ x ∧ a′

are reciprocal isomorphisms. We know 1 ≤ |G| from the latest assumption. The
injectivity of ψ and the fact that ψ(x) ≤ x ∈ X gives ψ(x) ∈ G′ for any x ∈ G
show that |G| ≤ |G′|.

We can assume that G′ resp. G is a greedy order-ideal of ↓a′ resp. ↑a such that
ψ(G) ⊆ G′. (Then G ∪ G′ is necessarily an order-ideal, so it is still denoted by
X.) Indeed, if this is not the case then, instead of G and G′, we could use H and
H ′ obtained as follows. First the induction hypothesis allows us to replace G′ by a
greedy order-ideal H ′ of ↓a′ with |G′| = |H ′| and h(G′) ≤ h(H ′). Clearly, ϕ(H ′) is
a greedy order-ideal of ↑a, and Fact 4 gives a greedy order-ideal H of ↑a such that
|H| = |G| and H ⊆ ϕ(H ′). Since h(G) ≤ h(H) by the induction hypothesis, H and
H ′ do the job.

There are three cases. First we assume that 2m−2 ≤ |G| or 2m−1 ≤ |X|. We
have 2m−1 ≤ |X| in both cases, for |G| ≤ |G′|. By Fact 1, there is an atom q ∈ Bm
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such that ↓q′ ⊆ X. By the induction hypothesis, there exists a subset Y with
|Y | = |X ∩ ↑q| and h(Y ) ≥ h(X ∩ ↑q) such that either Y is empty or it is a greedy
order-ideal of ↑q. We can let U = Y ∪ ↓q′, which does the job by Fact 3.

The case when |G′| ≤ 2m−2 is even simpler. Indeed, G′ ⊆ ↓p for some coatom
p of ↓a′ by Fact 2. Let q = ϕ(p), which is a coatom of Bm. Clearly, X ⊆ ↓q.
Applying the induction hypothesis to ↓q we obtain a greedy order-ideal U in ↓q
with h(X) ≤ h(U ) and |X| = |U |, and U does the job in Bm, too.

So we are left with the case depicted in Figure 2; namely, let |G| < 2m−2 < |G′|
and |X| < 2m−1. By Fact 1 we can choose an atom b ∈ ↓a′ such that its complement
p taken in ↓a′ belongs to G′. Notice that p = a′ ∧ b′ = ψ(b′). We can assume that
G ⊆ [a, b′], for otherwise G can be replaced by a |G|-element greedy order-ideal of
[a, b′]. Let G′

2 = G′ ∩ [b, a′], i = |G′
2|, j = |G|, and, to prepare an application of

Lemma 4 for n = m − 2, let u := i + j and v := 0. Since |X| < 2m−1, u < 2m−2.
Choose a u-element greedy order-ideal H ′

2 in [b, a′]. Then, by Fact 3, U := H ′
2 ∪ ↓p

is a greedy order-ideal of ↓a′, whence U is a greedy order-ideal of Bm. Finally,
Lemmas 4 and 10 yield h(X) = h(↓p) + h(G′

2) + h(G) = h(↓p) + σ(~γ(m−2), 1, i) +
σ(~γ(m−2), 1, j) ≤ h(↓p) + σ(~γ(m−2), 1, u) + σ(~γ(m−2), 1, 0) = h(↓p) + h(H ′

2) + 0 =
h(U ). �

Lemma 13. Assume that Frankl’s conjecture holds over m-element base sets. Then
h(X) ≤ E(~β(m), 1, . . . , |X|) for each semi-ideal X of Bm.

Proof. We prove the lemma via induction on m. Let X be a semi-ideal of Bm.
According to Lemma 11, it suffices to find a greedy semi-ideal Y of Bm such that
|X| = |Y | and h(X) ≤ h(Y ). Part (3) of Lemma 9 allows us to fix an enumeration
a1, . . . , am of the atoms in Bm such that with the notations

X0 = X ∩ ↓a′m, X1 = (X ∩ ↑am) \ {am}, X2 = X ∩ {am}

we have |X1| + |X2| ≤ |X0|. Note that X = X0 ∪ X1 ∪X2 and Xi ∩ Xj = ∅ for
0 ≤ i < j ≤ 2.

Clearly, X0 is a semi-ideal of ↓a′m ∼= Bm−1. To see that X1 is a semi-ideal of
↑am

∼= Bm−1, let x ∈ X1. Then there is an atom p ∈ Bm with [p, x] ⊆ X. If p 6= am

then p∨ am is an atom of ↑am and [p∨ am, x] ⊆ X1. If p = am then for each atom
q of ↑am, [q, x] ⊆ X1. Therefore X1 is indeed a semi-ideal of ↑am.

Now let I1, . . . , Im−1 be the standard interval sequence of ↓a′m determined by the
enumeration a1, . . . , am−1 of its atoms. Similarly, let J1, . . . , Jm−1 be the standard
interval sequence of ↑am determined by the enumeration a1 ∨ am, . . . , am−1 ∨ am of
its atoms. Notice that the mappings

ϕj : Ij → Jj , x 7→ x ∨ am and ψj : Jj → Ij , x 7→ x ∧ a′m
are reciprocal lattice isomorphisms for each j ∈ {1, . . . ,m − 1}. In fact, they are
the restrictions of the reciprocal isomorphisms

ϕ : ↓a′m → ↑am, x 7→ x ∨ am and ψ : ↑am → ↓a′m, x 7→ x ∧ a′m .

Now let
Y0 = I1 ∪ · · · ∪ Ik−1 ∪ U

be a greedy semi-ideal of ↓a′m (of rank k) such that |Y0| = |X0|. Here U denotes a
greedy order-ideal of Ik. Since |X1| ≤ |X0|, we can choose a greedy semi-ideal Y1
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of ↑am such that |Y1| = |X1| and ψ(Y1) ⊆ Y0 (cf. Fact 4 from the previous proof).
Let ` be the rank of Y1. Then ` ≤ k and Y1 is of the form

Y1 = J1 ∪ · · · ∪ J`−1 ∪ V,

where V is a greedy order-ideal of J`. The induction hypothesis gives h(X0) ≤ h(Y0)
and h(X1) ≤ h(Y1), whence h(X) ≤ h(Y0 ∪ Y1 ∪X2). Notice that

K1 = I1 ∪ J1, K2 = I2 ∪ J2, . . . , Km−1 = Im−1 ∪ Jm−1, Km = {am}

is the standard interval sequence of Bm associated with the enumeration a1, . . . , am

of its atoms.

First we consider the case when k = `; the situation for k = ` = 3 is outlined
in Figure 3. Since U is a (greedy) order-ideal of Ik, V is an order-ideal of Jk and

B   :m

m

1

1

0

a

ma’

a2a3a

1I2I
V

U

1J

2J

Figure 3

ψk(V ) ⊆ U , we conclude that U ∪ V is an order-ideal of Kk = Ik ∪ Jk. Let W be
a greedy order-ideal of Kk such that |W | = |U | + |V | = |U ∪ V |. We know from
Lemma 12 that h(U ∪ V ) ≤ h(W ). Clearly,

Z := (I1 ∪ J1) ∪ · · · ∪ (Ik−1 ∪ Jk−1) ∪W = K1 ∪ · · · ∪Kk−1 ∪W

is a greedy semi-ideal of Bm, and we have h(Y0 ∪ Y1) ≤ h(Z). If X2 = ∅, i.e.
am /∈ X, then |X| = |Z| and h(X) = h(X0) + h(X1) ≤ h(Y0) + h(Y1) ≤ h(Z), as
requested. In case of am ∈ X we need an easy further step: let Z+ be a greedy
semi-ideal of Bm such that Z ⊆ Z+ and |Z+| = |Z|+ 1. Then

h(X) = h(X0) + h(X1) + h(am) ≤ h(Y ) + 1 ≤ h(Z) + 1 ≤ h(Z′)

together with |X| = |Z+| settles the case k = `.

The general case is when rank(Y0) = k ≥ ` = rank(Y1). This will be settled by
an induction on k − `. For k − ` = 0 the job has already been done. Now assume
that k− ` > 0; the situation for (k, `) = (4, 2) is outlined in Figure 4. We are going
to define a pair (T0, T1) of greedy semi-ideals with the same properties as those
assumed for (Y0, Y1) such that rank(T0) − rank(T1) < k − `.
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As an intermediate step we define a greedy semi-ideal R0 of ↓a′m and a greedy
semi-ideal R1 of ↑am. Let i = |U | and j = |V |. In order to harmonize with the
notations of Lemma 4, define u = i + j if i + j ≤ 2m−`−1 = |J`| and let u = |J`|
otherwise. Let v = i + j − u. Now let R1 = J1 ∪ · · · ∪ J`−1 ∪ V + where V + is a
u-element greedy order-ideal of J`. Let U− be a v-element subset of Ik such that
U− is a greedy order-ideal of Ik when v > 0. Then R0 = I1 ∪ · · · ∪ Ik−1 ∪ U−.

Finally, if V + = J` and U− 6= ∅ then let T0 = R0 \ U−, and add v = |U−|
many new elements to R1 to obtain the greedy semi-ideal T1 of ↑am. (These new
elements will of course go into J`+1.) In the other case when V + ⊂ J` or U− = ∅,
we simply let (T0, T1) = (R0, R1).

Clearly, we have |Y0 ∪ Y1| = |T0 ∪ T1| and rank(Y0) − rank(Y1) > rank(T0) −
rank(T1). So we are left with the duty of showing h(Y0) + h(Y1) ≤ h(T0) + h(T1).

It follows from Lemmas 4 and 10 that

hIk(U ) + hJ` (V ) ≤ hIk(U−) + hJ` (V
+) .

Therefore, measuring the total height in Bm rather than in Ik and J`, we conclude

h(U ) + |U |+ h(V ) + 2|V | ≤ h(U−) + |U−|+ h(V +) + 2|V +|,

which implies h(U ) + h(V ) ≤ h(U−) + h(V +), for |U−| + |V +| = |U | + |V | and
|V | ≤ |V +|. Therefore h(Y0) + h(Y1) ≤ h(R0) + h(R1). Finally, h(R0) + h(R1) ≤
h(T0) + h(T1) is evident. �

5. The end of the proof and two conjectures

Now Theorem 1 follows from Lemmas 8, 11 and 13. Finally, Lemma 9 guarantees
that Theorem 1 implies the Main Theorem.

We conclude the paper with two conjectures. Although they are formulated
in terms of lattice theory, which goes well with the present paper, they will be
translated to pure combinatorial language afterwards.

• For each semi-ideal X of Bm, h(X) ≤ E(~β(m) , 1, . . . , |X|).
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• There is a function f(m) such that f(m)/2m/2 tends to ∞ and h(X) ≤ m/2
for every semi-ideal X ⊆ Bm with |X| ≤ f(m).

According to Lemma 13 and Theorem 1, a positive solution of Frankl’s conjecture
would solve both problems in the affirmative. However, these conjectures might be
easier (to prove or refute) than Frankl’s one.

The ideas of Lemma 9 lead easily to the following combinatorial interpretation
of the first conjecture. Given 1 ≤ k ≤ 2|A|, we want to find a union-closed family
F , ∅ ∈ F ⊆ P (A), such that w(F) be minimal. The conjecture asserts that we
can obtain such an F by the obvious greedy algorithm in 2|A| − k steps, starting
from F0 = P (A) and deleting just one member of Fi−1 in the ith step. Note that
Bošnjak and Marković [5] settle the first conjecture for m ≤ 11.

A positive solution of the second conjecture would simply say that even if we
cannot leave the assumption “Frankl’s conjecture holds over m-element sets” out
of the Main Theorem, the averaged Frankl’s property holds for union-closed sets
which are “essentially” larger than those treated in [7] (and mentioned in the In-
troduction.)
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[18] P. Marković: An attempt at Frankl’s conjecture, Publ. Inst. Math. (Beograd) (N.S.) 81(95)

(2007), 29–43.



AVERAGING FOR FRANKL’S CONJECTURE 17

[19] R. Morris: FC-families and improved bounds for Frankl’s conjecture, European J. Combin.

27 (2006), 269–282.
[20] T. Nishimura and S. Takahashi: Around Frankl’s conjecture, Sci. Rep. Yokohama Nat. Univ.

Sect. Math. Phys. Chem. 43 (1996), 15–23.
[21] R. M. Norton and D. G. Sarvate: A note of the union-closed sets conjecture, J. Austral.

Math. Soc. Ser. A 55 (1993) 411–413.
[22] B. Poonen: Union-closed families, J. Combinatorial Theory A 59 (1992), 253–268.

[23] D. Reimer: An average set size theorem, Combin. Probab. and Comput. 12 (2003), 89–93.
[24] J. Reinhold: Frankl’s conjecture is true for lower semimodular lattices, Graphs and Combi-

natorics 16 (2000), 115–116.
[25] J-C. Renaud: Is the union-closed sets conjecture the best possible?, J. Austral Math. Soc.

Ser. A 51 (1991), 276–283.
[26] J-C. Renaud: A second approximation to the boundary function on union-closed collections,

Ars. Combin. 41 (1995), 177-188.
[27] J-C. Renaud and D. G. Sarvate: On the union-closed sets conjecture, Ars Combin. 27 (1989),

149–153.
[28] J-C. Renaud and D. G. Sarvate: Improved bounds for the union-closed sets conjecture, Ars

Combin. 29 (1990), 181–185.
[29] I. Rival (ed): Graphs and Order, NATO Advanced Sci. Inst. Ser. C: Math. and Phys. Sciences

147, D. Reidel Publ. Co. Dordrecht–Boston (1985), p. 525.
[30] I. Roberts, Tech. Rep. No. 2/92, School Math. Stat., Curtin Univ. Tech., Perth, 1992.

[31] R. P. Stanley: Enumerative Combinatorics, Vol. I., Belmont, CA: Wadsworth and
Brooks/Coole, 1986.

[32] T. P. Vaughan: Families implying the Frankl conjecture, European J. Combin. 23 (2002),
851–860.

[33] T. P. Vaughan: A note on the union-closed sets conjecture, J. Combin. Math. Combin.
Comput. 45 (2003), 95–108.

[34] T. P. Vaughan: Tree-sets in a union-closed family, J. Combin. Math. Combin. Comput. 49
(2004), 73–84.

[35] P. Winkler: Union-closed sets conjecture, Austral. Math. Soc. Gaz. 14 (1987), p. 99.
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